
Project Proposal
I propose to work on the creation of a DMA-BUF backend for

waycrate’s libwayshot screen capture library. Presently
libwayshot’s method of screen-capture requires copying from
graphics memory to system memory via CPU using the shared memory
methods of the wlr-screencopy protocol. This method has too much
overhead for uses like high resolution streaming: any further
transforms and processing of the image will either be performed on
CPU (inefficient) or require another copy back onto graphics
memory. There is a better way to do this.

The DMA-BUF (short for Direct Memory Access Buffer) is a Linux
kernel framework that allows for efficiently sharing buffers of
memory between multiple graphics devices or subsystems. Using the
DMA-BUF export mechanisms in wlroots we can completely avoid
downloads and uploads between graphics memory and the CPU, thus
allowing for increased efficiency and performance. This will be
especially noticeable on higher resolution screen-captures where
individual frame buffers become too large to be efficiently dealt
with on a CPU compared to how they can be handled on the GPU.

The Deliverables for this project are: Complete implementation of
a high-performance DMA-BUF based screen capture backend in
libwayshot, Documentation for using it.



Related Experience
● Built midirouter which (with the MIDI audio protocol) has

functionality roughly analogous to what xdg-portal-luminous
has for the wayland ecosystem - move multimedia streams from
one application to another.

● Built a toy raytracer in Rust in order to gain an
understanding of the process of turning abstract mathematical
objects into pixels in a buffer:
https://github.com/CheerfulPianissimo/ray_path

● Have an open documentation PR on the sway wayland compositor.

● Minor experience in open source contributions, mostly in
small bug-fixes and patches.

● Experience in porting postmarketOS to a new target device to
the point of having the fb-dev display driver+xfce4 working.

Why GSoC with Waycrate?
There are several reasons why I think waycrate will be a good fit
for me to work with in GSoC 2024:

● I’ve been daily-driving wayshot for a while and am personally
incentivised to improve its functionality.

● I have plans to use libwayshot for future projects that I
think will serve unmet community needs. To be more specific,
I wish to build a chromecast client for wlroots based
compositors. Having performant screen capture is essential
for this.

● I’ve participated in the community and find the members quite
amicable and proactive in preparing for the program.

● I wish to have more sustained experience with open source
contributions than mere one-off patches and bug-fixes and
believe the structured format and constraints of
GSoC+waycrate will provide just the right environment to
facilitate this.

https://github.com/CheerfulPianissimo/midirouter
https://github.com/CheerfulPianissimo/ray_path
https://github.com/swaywm/sway/pull/7497#
https://github.com/ankidroid/Anki-Android/pull/10561


The Proposal
Here I will detail my proposal for GSoC 2024 under waycrate:

Motivation
libwayshot is a Rust crate that implements screen capture

functionality for wlroots based compositors. It’s also associated
with wayshot - a cli app based on libwayshot that provides an
executable for capturing wlroots outputs or parts of them.

Presently libwayshot uses shared memory (in the form of wl_shm
buffers) to transfer screen capture data from the compositor via
the wlr-screencopy protocol.

However, most wlroots compositors are hardware accelerated and
will make use of the VRAM to perform all of their rendering.
Transferring graphics data via memfd_create necessitates that the
compositor move the required data from the VRAM via the CPU,
adding a degree of overhead.

Now, some applications may be just fine with this because they
already have no option but to download data from the VRAM in order
to encode and store it on the filesystem or send it over the
network or other such CPU-centric processes. This is the case for
one-off screencapture applications like wayshot.

However, there is a class of applications which need to perform
further GPU accelerated operations on this graphics data.
Consider:

● Screen recorders that use hardware acceleration for
video encoding.

● Desktop portals like xdg-portal-luminous that route
screen content to other apps.

● Screen mirroring apps that apply various transformations
on screen content before returning it to the compositor
to display.

In all these cases the screen content needs to be uploaded back
into the GPU. In these cases using shared memory simply adds
unnecessary downloads and uploads with respect to the GPU. wlroots



provides the capability to avoid this inefficiency by providing
methods to keep the captured content on VRAM without any copies.
My motivation here is to propose a way for libwayshot to support
these methods and widen its applicability to a larger class of
projects that involve screen capture.

Detailed Description
First, we need some context around how wlroots-based wayland

compositors handle screen capture. There are mainly two protocols
that enable this:

1. wlr-screencopy-unstable-v1
2. wlr-export-dmabuf-unstable-v1

Libwayshot in its present state uses only wlr-screencopy. The
major difference between these two is in the type of buffers each
of them deal with:

● In wlr-screencopy the compositor will notify the client of
upto two different types of available buffer types: wl_shm
shared memory buffers and linux dmabuf based DMA-BUF buffers.
The client must create one of these and pass it to the
compositor for it to copy screen content into.

○ libwayshot presently uses only the wl_shm mode of
wlr-screencopy.

○ wlr-screencopy is capable of copy on damage
functionality: the compositor signals a filled buffer
only when the captured region has been damaged.

○ wlr-screencopy can choose to capture certain sub-regions
of outputs.

○ Buffers here must be created by the client: wl_shm
buffers can be created by memfd_create and dmabuf
buffers can be created by the linux_dmabuf wayland
protocol.

■ A copy is unavoidable here. However, VRAM->CPU
copies can still be avoided in dmabuf mode as
dmabuf buffer copies occur entirely on the GPU.
These are relatively efficient depending on the
hardware and drivers.

https://wayland.app/protocols/wlr-screencopy-unstable-v1
https://wayland.app/protocols/wlr-export-dmabuf-unstable-v1


● wlr-export-dmabuf deals solely with dmabuf buffers. In this
protocol the compositor passes off dmabuf handles to the
client for each frame. No copying will be involved here.

○ The client can choose which output to capture but it
cannot select regions under this output.

○ No copy with damage is available.

○ The client need not create dmabuf buffers of its own.

Overall the tradeoffs between these approaches are as follows:

● wlr-screencopy needs to perform dmabuf copies but these are
pretty efficient and any performance losses here compared to
wlr-export-dmabuf here should be somewhat offset by the
availability of copy with damage requiring less data to be
processed overall. Ultimately benchmarking will be required
to understand the performance gaps.

● wlr-screencopy is more complex to implement than
wlr-export-dmabuf but this is offset by the fact that most of
this complexity is already present in libwayshot while
wlr-export-dmabuf will have to be implemented from scratch.

○ The overall trade off appears to be between the
flexibility and universal availability of wlr-screencopy
versus the simplicity and (arguably) performance of
wlr-export-dmabuf.

After consideration of the above tradeoffs and discussion with
organization contributors, I have decided to implement the
wlr-screencopy version of the dmabuf backend for this project.
Let’s discuss this in detail.



Here’s a diagram containing high level overview of what I propose
to initially build. The components in dotted lines will be
implemented as part of GSoC.

The main steps in implementing this are:
1. dmabuf creation and configuration (using the linux-dmabuf

protocol)
2. dmabuf backed wl-buffer creation
3. Passing to compositor for copy
4. Returning the resulting buffer to the client

Let’s have a high-level overview for each of these steps:

DMA-BUF Backed wl-buffer Creation
Creating a DMA-BUF is a somewhat more involved process than

creating shm buffers. While the latter can be created using a few
system calls, the general mechanism for creating DMA-BUFs in
wayland is by using the stable linux-dmabuf protocol.

The details of these protocol are somewhat beyond the scope of
this proposal but the process has two steps:

1. Obtain the ZwpLinuxDmabufV1 interface from the compositor.
a. The wayland global registry can be queried to do this.

2. Use ZwpLinuxDmabufV1 to create a ZwpLinuxBufferParamsV1
interface object.

a. Relevant request: create_params
3. Use the ZwpLinuxBufferParamsV1 interface to build a dmabuf

backed wl-buffer.
a. Relevant request: create_immed

https://wayland.app/protocols/linux-dmabuf-v1
https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_dmabuf_v1
https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_buffer_params_v1
https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_dmabuf_v1:request:create_params
https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_buffer_params_v1
https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_buffer_params_v1:request:create_immed


Passing the wl-buffer to compositor for copy
Once the requisite wl-buffer has been created it needs to be

passed to the compositor to be filled in. The steps for this are:
1. Check if the compositor actually has dmabuf support. This is

done by checking for a linux_dmabuf event from the
ZwlrScreencopyFrameV1 interface. This event will have all the
information needed to configure the dmabuf later on.

2. Create the dmabuf backed wl-buffer using the linux-dmabuf
protocol as discussed above.

3. Pass the dmabuf backed wl-buffer to the compositor to be
filled in. libwayshot already does this with the copy request
on the ZwlrScreencopyFrameV1 interface. The process is the
same for dmabuf backed wl-buffers.

Returning the resulting buffer to the client
Once the copy is complete libwayshot has to pass the

resultant dmabuf backed wl-buffer back to the caller in an
appropriate form. Further processing and transformations if any
are required can be performed here. An ergonomic and useful API
has to be designed and the right data types chosen.

Stretch Goals
If time constraints permit I have a few more ideas relating

to the main proposal that I would like to implement, in order of
their priority:

1. Switching xdg-portal-luminous from screencopy+wl-shm to
screencopy+DMA-BUF

xdg-portal-luminous is waycrate’s desktop portal project
that provides screenshotting and screencasting capabilities
via libwayshot. Presently the screencasting thread here uses
libwayshot’s capture_output_frame_shm_fd to perform screen
captures using shared memory backed wl-buffers. This involves
a high overhead VRAM download which may not be useful for
many applications using the portal. Once dmabuf support is
built into libwayshot, it should be possible to modify
xdg-portal-luminous to use it to provide improved screen
capture performance.

https://wayland.app/protocols/wlr-screencopy-unstable-v1#zwlr_screencopy_frame_v1:event:linux_dmabuf
https://wayland.app/protocols/wlr-screencopy-unstable-v1#zwlr_screencopy_frame_v1
https://wayland.app/protocols/wlr-screencopy-unstable-v1#zwlr_screencopy_frame_v1:request:copy
https://wayland.app/protocols/wlr-screencopy-unstable-v1#zwlr_screencopy_frame_v1
https://github.com/waycrate/xdg-desktop-portal-luminous


2. Implement a benchmarking suite
As the old adage goes: "You can't improve what you don't
measure." If libwayshot is to aim for high performance
applications, we need to be capable of quantifying its
performance. Regressions in performance may also be detected
easily with such a suite. Plus, it makes goal 4 more
feasible.

3. Implement screen recording in wayshot CLI
The tracking issue for this is here. Discuss with mentors if
this is to be attempted within wayshot CLI or as a separate
app. Makes more sense if integrated with goal 5 below.

4. Implement and benchmark screen capture with wlr-export-dmabuf
I discussed the reasons to prioritize wlr-screencopy over
wlr-export-dmabuf above. If time permits I can also try
building a wlr-export-dmabuf based backend for libwayshot.
Benchmarking can be used for finding out how much of a useful
route this is over wlr-screencopy. There may be certain cases
where the lack of copy on damage doesn’t affect performance,
like high resolution, high framerate game streaming. If such
applications are found the additional backend may be
integrated into libwayshot.

5. Investigate wlr-export-dmabuf for screen recording
There is an existing project wl-screenrec that uses
wlr-screencopy+dmabufs along with hardware video encoding via
ffmpeg to create highly performant screen recording
applications. Further performance gains could be realized by
using wlr-export-dmabuf as the screen capture protocol via
libwayshot if goal 3 is implemented. I asked the author of
the project about it and they seemed positive: Issue.

https://github.com/waycrate/wayshot/issues/47
https://github.com/russelltg/wl-screenrec
https://github.com/russelltg/wl-screenrec/issues/65


Project Timeline Plan
Here’s my tentative timeline for GSoC 2024. It is not set in

stone and can be changed when the landscape for the project
becomes more clear. I have taken a conservative approach with this
plan, leaving the two weeks at the end as an emergency buffer. In
this spirit, the stretch goals have also not been taken into
account.

Period Activity

Community Bonding Period
May 1 to May 26

Week 1
May 1 to May 5

● Get to know my mentors and fellow
waycrate contributors

● Hash out expectations, development
conventions and schedules for
meetings

● Read up on wayland documentation

Week 2
May 6 to May 12

● Read up on and understand the
wayland-rs library

● Understand the requisite protocols
and their history

● Understand and document overall
libwayshot architecture

Week 3
May 13 to May 19

● Create tracking issues for the idea
implementation

● Improve documentation for libwayshot
● Try building a few small programs

using the libwayshot API

Week 4
May 20 to May 26

● Focus on end-semester exams
● Fill in more details in the proposal

with all research performed till date

Goals For Period:
● Gain an user perspective on the libwayshot API
● Become a part of the waycrate community
● Improve understanding of the codebase

○ Try improving documentation of the codebase in this



process
● Get used to balancing college coursework and GSoC

Official Coding Phase Begins

Week 1
May 27 to June 2

● Focus on end-semester exams
Week 2

June 3 to June 9

Implementation Phase 1 - Tackle linux-dmabuf-v1!
June 10 to June 23

Week 3
June 10 to June 16

● Understand the linux-dmabuf-v1
protocol

● Understand how wayland-rs can be used
to implement it

● Build and test a MVP using it that
creates a dmabuf on the GPU

Week 4
June 17 to June 23

● Integrate the protocol implementation
into libwayshot

● Figure out the API design and
datatypes for passing the dmabuf to
the user

● Document everything done in phase 1

Goals For Phase 1:
● Gain familiarity with wayland-rs and other libwayshot deps
● Gain familiarity working on and modifying the libwayshot

codebase
● Implement dmabuf creation in libwayshot

Deliverables For Phase 1:
● dmabuf MVP in libwayshot

Implementation Phase 2 - Get DMA-BUF backed wl-buffers
July 1 to July 21

Week 5
July 1 to July 7

● Use linux-dmabuf protocol to create a
wl-buffer backed by a dmabuf

● Implement a way to test that the
dmabuf setup is actually working

Week 6 ● Focus on end-semester Lab exams

https://wayland.app/protocols/linux-dmabuf-v1#zwp_linux_buffer_params_v1


July 8 to July 14 ● GSoC Midterm Evaluations

Week 7
July 15 to July 21

● Use screencopy protocol to detect
presence of dmabuf capabilities

● Use the information from the
linux_dmabuf event to configure the
dmabuf created earlier

● Document everything in phase 2

Goals For Phase 1:
● Integrate linux-dmabuf and wlr-screencopy protocols
● Get a basic working example for dmabuf screenshotting

Deliverables For Phase 1:
● A screenshotting MVP in libwayshot using dmabuf

Implementation Phase 3 - Pull screen captures into the wl-buffers
July 22 to August 11

Week 8
July 22 to July 28

● Create the user facing dmabuf backed
screen capture API in libwayshot

● Configure it to setup a dmabuf backed
wl-buffer and use it in copy or
copy_with_damage

Week 9
July 29 to August 4

● Test and ensure that the dmabuf
backend works with other capabilities
of libwayshot

● Implement any integrations required
for region selection, output
selection, etc

Week 10
August 5 to August 11

● Integrate dmabuf backend into wayshot
CLI application

● Test the completed app on as many
permutations and devices as possible

Goals For Phase 3:
● Finalize and implement user facing API in libwayshot
● Bring out this functionality in wayshot CLI app if such a

thing is beneficial
● Test this functionality



Deliverables For Phase 3:
● Complete implementation of DMA-BUF based screen capture in

libwayshot
● Documentation for using this backend

Week 10
August 12 to August 18

● Buffer period for debugging, ironing
out any remaining problems and
pursuing stretch goals.

● Document everything done in Phase 3
● Document the GSoC experience, prepare

a demo demonstrating improvements if
possible

● Perform any further required
activities discovered during previous
phases

Week 11
August 19 to August 26

GSoC Contributor Evaluations


